ISSN 1600-5368

Tetrakis(µ-naphthalene-1-acetato)bis-[(naphthalene-1-acetato)(1,10-phenanthroline)ytterbium(III)]

Hai-Tao Xia,^a* Yu-Fen Liu,^a Da-Qi Wang^b and Shu-Ping Yang^a

^aDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang Jiangsu 222005, People's Republic of China, and ^bCollege of Chemistry, and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China.

Correspondence e-mail: xht161006@hhit.edu.cn

Received 11 October 2007; accepted 17 October 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.010 Å; R factor = 0.031; wR factor = 0.089; data-to-parameter ratio = 12.9.

The title complex, $[Yb_2(C_{12}H_9O_2)_6(C_{12}H_8N_2)_2]$, has a centre of symmetry. The nine-coordinate Yb^{III} atom has a distorted monocapped square antiprismatic geometry. Molecules are linked into three chains by $C-H\cdots O$ hydrogen bonds and π - π stacking interactions [centroid-to-centroid distance 3.775 (4) Å]; combination of the three chains results in the formation of a three-dimensional network.

Related literature

For related literature, see: Liu *et al.* (2007*a*,*b*); Xia *et al.* (2007*a*,*b*,*c*).

Experimental

Crystal data

$[Yb_2(C_{12}H_9O_2)_6(C_{12}H_8N_2)_2]$	a = 12.3640 (10) A
$M_r = 1817.64$	b = 13.5622 (12) Å
Triclinic, P1	c = 13.5954 (13) Å

$\alpha = 114.189 \ (3)^{\circ}$
$\beta = 99.559 \ (2)^{\circ}$
$\gamma = 103.485 \ (2)^{\circ}$
V = 1932.3 (3) Å ³
Z = 1

Data collection

Siemens SMART 1000 CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.505, T_{\rm max} = 0.739$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.031 & 514 \text{ parameters} \\ wR(F^2) &= 0.089 & H\text{-atom parameters constrained} \\ S &= 1.01 & \Delta\rho_{\text{max}} &= 2.49 \text{ e } \text{\AA}^{-3} \\ 6634 \text{ reflections} & \Delta\rho_{\text{min}} &= -1.14 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Selected bond lengths (Å).

Yb1-O1 ⁱ	2.261 (3)	Yb1-N2	2.494 (4)
Yb1-O3	2.266 (3)	Yb1-O1	2.558 (3)
Yb1-O6	2.300 (4)	Yb1-N1	2.560 (4)
Yb1-O4 ⁱ	2.311 (3)	Yb1-O5	2.576 (4)
Yb1-O2	2.397 (3)		

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C30−H30···O6 ⁱⁱ	0.93	2.50	3.374 (9)	157
$C44 - H44 \cdots O2^{iii}$	0.93	2.44	3.223 (6)	142
C37−H37···O4 ⁱ	0.93	2.34	2.944 (6)	123
C46−H46···O3	0.93	2.45	3.044 (6)	122
Symmetry codes:	(i) $-x + 2, -y = -y + 2$	+1, -z +1; (i	ii) $-x + 2, -v +$	1, -z + 2; (iii)

-x + 1, -y + 1, -z + 1.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

We acknowledge the financial support of the Huaihai Institute of Technology Science Foundation and the Department of Chemical Engineering.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2427).

References

- Liu, Y.-F., Xia, H.-T., Wang, D.-Q. & Yang, S.-P. (2007a). Acta Cryst. E63, m2608-m2609.
- Liu, Y.-F., Xia, H.-T., Wang, D.-Q. & Yang, S.-P. (2007b). Acta Cryst. E63, m2625–m2626.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Mo $K\alpha$ radiation $\mu = 2.48 \text{ mm}^{-1}$

 $0.32 \times 0.16 \times 0.13 \text{ mm}$

9882 measured reflections 6634 independent reflections

5654 reflections with $I > 2\sigma(I)$

T = 298 (2) K

 $R_{\rm int} = 0.020$

Siemens. (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Xia, H.-T., Liu, Y.-F., Wang, D.-Q. & Chen, L. (2007a). Acta Cryst. E63, m2610– m2611. Xia, H.-T., Liu, Y.-F., Wang, D.-Q. & Yang, S.-P. (2007b). Acta Cryst. E63, m2624.

Xia, H.-T., Liu, Y.-F., Wang, D.-Q. & Yang, S.-P. (2007c). Acta Cryst. E63, m2708–m2709.

Acta Cryst. (2007). E63, m2795-m2796 [doi:10.1107/S1600536807051252]

Tetrakis(#-naphthalene-1-acetato)bis[(naphthalene-1-acetato)(1,10-phenanthroline)ytterbium(III)]

H.-T. Xia, Y.-F. Liu, D.-Q. Wang and S.-P. Yang

Comment

We have recently reported the crystal structures of the rare earth complexes with 1-naphthylacetic acid (NAA) and 1,10-phenanthroline (phen), [Eu(NAA)₃(phen)]₂·2DMF (II), [Gd(NAA)₃(phen)]₂·2DMF (III) (Liu *et al.*, 2007*a*,*b*), [Pr(NAA)₃(phen)]₂·2DMF, [Tb(NAA)₃(phen)]₂·2DMF (IV) and [Sm(NAA)₃(phen)]₂·2DMF (V) (Xia *et al.*, 2007*a*,*b*,*c*). We report here the crystal structure of ytterbium complexes with NAA and phen.

In the title complex, the coordination environment of Yb atom and coordination modes of the NNA ligands coordinated to the Yb^{III} ion are in agreement with the those of we reported (Fig.1). The average bond lengths of between the ytterbium center and carboxylic oxygen atoms are 2.418 (4) Å, shorter than that 2.4725 (5)Å of complex (II), 2.441 (7) of complex (III), 2.450 (7) of complex (IV) and 2.456 (7) of complex (V). The Yb…Yb distance is 3.8482 (5) Å. The dihedral angles of the least-square-plane Yb₂O₂ and naphthyl rings are 66.17 (10)° (C3—C12 ring), 38.48 (12)° (C15—C24 ring) and 69.83 (13)° (C27—C36 ring), and the dihedral angle between Yb₂O₂ plane and phen ring is 73.87 (9)°.

The molecules are linked into two chains running parallel to the *a*, *b* and *c* axil by means of C—H···O hydrogen bonds and π ··· π stacking interaction (Fig. 2–4, and Table 2). The ring (C15—C20) in the molecules at (*x*, *y*, *z*) are parallel to one another ring (C15—C20) in the molecules at (2 – *x*, 1 – *y*, 1 – *z*), the separation of ring centroids is 3.775 (4) Å, with an interplanar spacing of *ca* 3.524 Å, corresponding to a ring offset of *ca* 1.358 Å. Combination of the three chains results in the formation of a three-dimensional network.

Experimental

To a stirred solution of 1-naphthylacetic acid (0.5586 g, 3 mmol) and 1,10-phenanthroline monohydrate (0.198 g, 1 mmol) in 30 ml me thanol, and a solution of Yb(NO₃)₃·6H₂O (0.435 g, 1 mmol) in water (10 ml) was added. The mixed solution was heated to 333 K and stirred for 3 h, and then cooled to room temperature. The precipitate was washed with water and then dissolved in DMF. A colourless crystal suitable for X-ray diffraction was obtained by evaporation of DMF solution.

Refinement

The space group was uniquely assigned from the systematic absences. All H atoms were located in difference Fourier maps. H atoms bonded to C atoms were treated as riding atoms, with C—H distances of 0.93 Å (aryl) and 0.97Å (methylene), and with $U_{iso}(H) = 1.2U_{eq}(C)$ (aryl, methylene).

Figures

Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are at the 30% probability level. Unlabelled atoms in the molecular are related to labelled atoms by (2 - x, 1 - y, 1 - z).

Fig. 2. A larger portion of the crystal structure of (I), showing the formation of a hydrogenbonded chain built from C—H···O. For clarity, H atoms not involved in the hydrogen bonding have been omitted. Dashed lines indicate hydrogen bonds. [Symmetry codes: (A) 2 - x, 1 - y, 1 - z, (B) 1 - x, 1 - y, 1 - z, (C) 1 + x, y, z].

Fig. 3. A larger portion of the crystal structure of (I), showing the formation of a hydrogenbonded chain built from C—H···O. For clarity, H atoms not involved in the hydrogen bonding have been omitted. Dashed lines indicate hydrogen bonds. [Symmetry codes: (A) 2 - x, 1 - y, 1 - z, (D) 2 - x, 1 - y, 2 - z, (E) x, y, -1 + z].

Fig. 4. A larger portion of the crystal structure of (I), showing the formation $\pi \cdots \pi$ chain. For clarity, H atoms have been omitted. Dashed lines indicate $\pi \cdots \pi$ stacking interactions. [Symmetry codes: (A) 2 - x, 1 - y, 1 - z, (F) x, -1 + y, z, (G) 2 - x, 2 - y, 1 - z].

(I)

Crystal data

[Yb(C ₁₂ H ₉ O ₂) ₃ (C ₁₂ H ₈ N ₂)] ₂	Z = 1
$M_r = 1817.64$	$F_{000} = 910$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.562 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 12.3640 (10) Å	Cell parameters from 5557 reflections
b = 13.5622 (12) Å	$\theta = 2.6 - 27.6^{\circ}$
<i>c</i> = 13.5954 (13) Å	$\mu = 2.48 \text{ mm}^{-1}$
$\alpha = 114.189 (3)^{\circ}$	T = 298 (2) K
$\beta = 99.559 \ (2)^{\circ}$	Block, colourless
$\gamma = 103.485 \ (2)^{\circ}$	$0.32 \times 0.16 \times 0.13 \text{ mm}$
$V = 1932.3 (3) \text{ Å}^3$	

Data collection

Siemens SMART 1000 CCD area-detector diffractometer	6634 independent reflections
Radiation source: fine-focus sealed tube	5654 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.020$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.7^{\circ}$

Absorption correction: multi-scan	L = 14 . 14
(SADABS; Sheldrick, 1996)	$n = -14 \rightarrow 14$
$T_{\min} = 0.505, \ T_{\max} = 0.739$	$k = -11 \rightarrow 16$
9882 measured reflections	$l = -16 \rightarrow 12$

Refinement

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0503P)^2 + 2.6017P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{max} = 2.49 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -1.14 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Yb1	0.881165 (17)	0.512900 (17)	0.575054 (18)	0.02437 (8)
N1	0.7210 (4)	0.3782 (4)	0.6034 (4)	0.0326 (10)
N2	0.7069 (3)	0.5728 (3)	0.5967 (4)	0.0313 (10)
01	0.9257 (3)	0.4061 (3)	0.3906 (3)	0.0307 (8)
O2	0.7461 (3)	0.3720 (3)	0.3952 (3)	0.0348 (8)
O3	0.8872 (3)	0.6166 (3)	0.4798 (3)	0.0306 (8)
O4	1.0443 (3)	0.6260 (3)	0.4177 (3)	0.0328 (8)
O5	0.9358 (3)	0.7207 (3)	0.7312 (3)	0.0434 (9)
O6	0.9222 (4)	0.5761 (3)	0.7664 (3)	0.0468 (10)
C1	0.8185 (4)	0.3510 (4)	0.3426 (4)	0.0293 (11)
C2	0.7816 (5)	0.2586 (5)	0.2208 (5)	0.0395 (13)
H2A	0.8201	0.2907	0.1787	0.047*
H2B	0.8097	0.1969	0.2187	0.047*
C3	0.6525 (5)	0.2077 (5)	0.1606 (5)	0.0414 (13)

C4	0.6084 (5)	0.2365 (5)	0.0817 (5)	0.0501 (15)
H4	0.6583	0.2875	0.0662	0.060*
C5	0.4886 (6)	0.1908 (6)	0.0227 (6)	0.0583 (17)
Н5	0.4609	0.2106	-0.0320	0.070*
C6	0.4150 (6)	0.1196 (6)	0.0447 (6)	0.0612 (18)
Н6	0.3360	0.0920	0.0066	0.073*
C7	0.4547 (5)	0.0851 (5)	0.1252 (5)	0.0495 (15)
C8	0.5759 (5)	0.1306 (5)	0.1854 (5)	0.0430 (14)
С9	0.6130 (6)	0.0960 (5)	0.2662 (5)	0.0510 (15)
Н9	0.6916	0.1236	0.3058	0.061*
C10	0.5366 (6)	0.0233 (6)	0.2872 (6)	0.0618 (18)
H10	0.5630	0.0022	0.3413	0.074*
C11	0.4184 (7)	-0.0201 (6)	0.2284 (7)	0.068 (2)
H11	0.3668	-0.0698	0.2438	0.081*
C12	0.3784 (6)	0.0087 (6)	0.1501 (6)	0.0640 (19)
H12	0.2994	-0.0217	0.1114	0.077*
C13	0.9583 (4)	0.6568 (4)	0.4390 (4)	0.0291 (11)
C14	0.9367 (5)	0.7477 (4)	0.4082 (5)	0.0351 (12)
H14A	0.9074	0.7130	0.3267	0.042*
H14B	0.8759	0.7708	0.4386	0.042*
C15	1.0399 (5)	0.8543 (5)	0.4483 (5)	0.0387 (13)
C16	1.0819 (5)	0.8814 (5)	0.3720 (6)	0.0466 (15)
H16	1.0479	0.8319	0.2953	0.056*
C17	1,1764 (6)	0.9835 (5)	0.4076 (6)	0.0535 (17)
H17	1.2045	0.9992	0.3544	0.064*
C18	1.2249 (6)	1.0567 (5)	0.5175 (6)	0.0549 (17)
H18	1 2864	1 1232	0 5394	0.066*
C19	1 1854 (5)	1 0361 (5)	0.6013 (6)	0.0482(15)
C20	1 0927 (5)	0.9313 (5)	0.5656 (5)	0.0421 (14)
C21	1 0537 (6)	0.9120(5)	0.6493 (5)	0.0492(15)
H21	0.9943	0.8443	0.6283	0.059*
C22	1 1008 (6)	0.9901 (6)	0.7611 (6)	0.0605 (18)
H22	1.0739	0.9748	0.8151	0.073*
C23	1 1890 (7)	1 0925 (6)	0.7941 (7)	0.069 (2)
H23	1 2194	1 1463	0.8701	0.083*
C24	1 2306 (6)	1.1105	0.3701 0.7172(7)	0.063
H24	1.2905	1.1144 (0)	0.7410	0.073*
C25	0.9414 (5)	0.6813 (5)	0.7993 (5)	0.073
C25	0.9737(7)	0.0813(5)	0.9259 (5)	0.0410(13)
U20 Н26А	1.0468	0.8232	0.9259 (5)	0.070*
H26R	0.9146	0.3252	0.9392	0.070*
C27	0.9852 (6)	0.7079 (6)	0.9998 (5)	0.070
C28	1.0934(7)	0.7079 (0)	1.0531.(6)	0.0594(17)
H28	1.1588	0.7585	1.0450	0.083*
C29	1 1075 (8)	0.6604 (7)	1 1201 (6)	0.003
H29	1 1816	0.6647	1.1201 (0)	0.073 (2)
C30	1 0150 (8)	0.0047	1.1354 (6)	0.069 (2)
H30	1.0150 (0)	0.5667	1 1805	0.009 (2)
C31	0.0002 (7)	0.507	1.1005	0.003
0.51	0.7002(7)	0.5720(0)	1.0004 (0)	0.0015 (19)

C32	0.8846 (6)	0.6445 (5)	1.0150 (5)	0.0537 (16)
C33	0.7711 (7)	0.6308 (6)	0.9613 (6)	0.066 (2)
H33	0.7585	0.6624	0.9131	0.079*
C34	0.6784 (8)	0.5703 (7)	0.9804 (7)	0.082 (3)
H34	0.6029	0.5615	0.9455	0.099*
C35	0.6970 (9)	0.5221 (7)	1.0519 (8)	0.088 (3)
H35	0.6331	0.4814	1.0637	0.106*
C36	0.8016 (9)	0.5324 (7)	1.1029 (7)	0.077 (2)
H36	0.8112	0.5001	1.1508	0.092*
C37	0.7234 (5)	0.2798 (5)	0.5988 (5)	0.0405 (13)
H37	0.7830	0.2536	0.5772	0.049*
C38	0.6399 (5)	0.2131 (5)	0.6249 (5)	0.0481 (15)
H38	0.6435	0.1432	0.6190	0.058*
C39	0.5538 (5)	0.2509 (5)	0.6590 (5)	0.0467 (15)
H39	0.5000	0.2089	0.6798	0.056*
C40	0.5460 (5)	0.3540 (5)	0.6627 (5)	0.0398 (13)
C41	0.6314 (4)	0.4146 (4)	0.6319 (4)	0.0332 (12)
C42	0.6247 (4)	0.5169 (4)	0.6283 (4)	0.0314 (11)
C43	0.5323 (5)	0.5566 (5)	0.6564 (5)	0.0383 (13)
C44	0.5260 (5)	0.6549 (5)	0.6485 (5)	0.0436 (14)
H44	0.4653	0.6822	0.6646	0.052*
C45	0.6089 (5)	0.7103 (5)	0.6174 (5)	0.0434 (14)
H45	0.6065	0.7765	0.6132	0.052*
C46	0.6986 (5)	0.6663 (5)	0.5914 (5)	0.0390 (13)
H46	0.7546	0.7045	0.5695	0.047*
C47	0.4542 (5)	0.3976 (5)	0.6924 (5)	0.0488 (15)
H47	0.3988	0.3589	0.7145	0.059*
C48	0.4477 (5)	0.4935 (5)	0.6885 (5)	0.0481 (15)
H48	0.3870	0.5195	0.7071	0.058*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Yb1	0.01897 (12)	0.02730 (12)	0.03045 (13)	0.01066 (8)	0.01018 (8)	0.01416 (9)
N1	0.029 (2)	0.037 (2)	0.042 (3)	0.0146 (19)	0.019 (2)	0.024 (2)
N2	0.025 (2)	0.033 (2)	0.038 (2)	0.0116 (18)	0.0128 (19)	0.016 (2)
O1	0.0185 (17)	0.0326 (18)	0.040 (2)	0.0082 (14)	0.0064 (15)	0.0167 (16)
O2	0.0201 (18)	0.040 (2)	0.035 (2)	0.0084 (15)	0.0116 (15)	0.0088 (17)
O3	0.0274 (18)	0.0360 (19)	0.039 (2)	0.0165 (15)	0.0166 (16)	0.0219 (17)
O4	0.0295 (19)	0.0375 (19)	0.048 (2)	0.0191 (16)	0.0195 (17)	0.0274 (18)
O5	0.040 (2)	0.044 (2)	0.044 (2)	0.0118 (18)	0.0139 (18)	0.0187 (19)
O6	0.065 (3)	0.037 (2)	0.034 (2)	0.0130 (19)	0.016 (2)	0.0136 (18)
C1	0.024 (3)	0.030 (3)	0.034 (3)	0.010 (2)	0.008 (2)	0.016 (2)
C2	0.032 (3)	0.043 (3)	0.037 (3)	0.014 (2)	0.010 (2)	0.012 (3)
C3	0.038 (3)	0.041 (3)	0.040 (3)	0.014 (3)	0.009 (3)	0.014 (3)
C4	0.047 (4)	0.049 (4)	0.044 (4)	0.012 (3)	0.005 (3)	0.018 (3)
C5	0.053 (4)	0.055 (4)	0.052 (4)	0.012 (3)	-0.003 (3)	0.022 (3)
C6	0.048 (4)	0.054 (4)	0.058 (4)	0.010 (3)	-0.003 (3)	0.015 (3)

C7	0.042 (3)	0.043 (3)	0.051 (4)	0.012 (3)	0.009 (3)	0.014 (3)
C8	0.041 (3)	0.039 (3)	0.043 (3)	0.016 (3)	0.011 (3)	0.013 (3)
С9	0.050 (4)	0.044 (3)	0.051 (4)	0.016 (3)	0.008 (3)	0.018 (3)
C10	0.068 (5)	0.050 (4)	0.061 (5)	0.015 (3)	0.011 (4)	0.026 (3)
C11	0.064 (5)	0.054 (4)	0.067 (5)	0.005 (4)	0.016 (4)	0.022 (4)
C12	0.052 (4)	0.052 (4)	0.066 (5)	0.007 (3)	0.012 (4)	0.016 (4)
C13	0.029 (3)	0.029 (3)	0.038 (3)	0.017 (2)	0.012 (2)	0.020 (2)
C14	0.036 (3)	0.038 (3)	0.046 (3)	0.021 (2)	0.017 (3)	0.027 (3)
C15	0.040 (3)	0.036 (3)	0.056 (4)	0.024 (2)	0.019 (3)	0.027 (3)
C16	0.050 (4)	0.042 (3)	0.061 (4)	0.024 (3)	0.025 (3)	0.028 (3)
C17	0.053 (4)	0.046 (4)	0.075 (5)	0.020 (3)	0.030 (4)	0.035 (4)
C18	0.045 (4)	0.044 (4)	0.079 (5)	0.016 (3)	0.020 (4)	0.031 (4)
C19	0.043 (3)	0.038 (3)	0.068 (4)	0.022 (3)	0.010 (3)	0.027 (3)
C20	0.041 (3)	0.040 (3)	0.057 (4)	0.024 (3)	0.016 (3)	0.027 (3)
C21	0.049 (4)	0.042 (3)	0.058 (4)	0.020 (3)	0.012 (3)	0.024 (3)
C22	0.065 (5)	0.052 (4)	0.060 (4)	0.023 (3)	0.011 (4)	0.023 (4)
C23	0.066 (5)	0.052 (4)	0.069 (5)	0.025 (4)	0.000 (4)	0.015 (4)
C24	0.055 (4)	0.044 (4)	0.076 (5)	0.020 (3)	0.005 (4)	0.024 (4)
C25	0.046 (3)	0.046 (3)	0.037 (3)	0.015 (3)	0.021 (3)	0.019 (3)
C26	0.076 (5)	0.047 (4)	0.042 (4)	0.016 (3)	0.023 (3)	0.012 (3)
C27	0.071 (5)	0.052 (4)	0.036 (3)	0.021 (3)	0.018 (3)	0.013 (3)
C28	0.075 (5)	0.065 (5)	0.045 (4)	0.019 (4)	0.017 (4)	0.008 (4)
C29	0.080 (6)	0.071 (5)	0.047 (4)	0.037 (5)	0.006 (4)	0.007 (4)
C30	0.097 (6)	0.060 (5)	0.040 (4)	0.030 (4)	0.010 (4)	0.015 (3)
C31	0.083 (5)	0.051 (4)	0.040 (4)	0.020 (4)	0.022 (4)	0.013 (3)
C32	0.074 (5)	0.049 (4)	0.035 (3)	0.022 (3)	0.020 (3)	0.014 (3)
C33	0.075 (5)	0.060 (4)	0.048 (4)	0.019 (4)	0.019 (4)	0.013 (3)
C34	0.075 (6)	0.075 (5)	0.062 (5)	0.014 (4)	0.019 (4)	0.006 (4)
C35	0.094 (7)	0.071 (5)	0.063 (6)	0.002 (5)	0.027 (5)	0.011 (5)
C36	0.098 (7)	0.063 (5)	0.051 (5)	0.013 (5)	0.023 (5)	0.018 (4)
C37	0.032 (3)	0.045 (3)	0.055 (4)	0.018 (2)	0.017 (3)	0.028 (3)
C38	0.040 (3)	0.048 (3)	0.066 (4)	0.013 (3)	0.016 (3)	0.037 (3)
C39	0.036 (3)	0.052 (4)	0.058 (4)	0.008 (3)	0.019 (3)	0.033 (3)
C40	0.029 (3)	0.049 (3)	0.047 (3)	0.010 (2)	0.017 (3)	0.027 (3)
C41	0.023 (3)	0.043 (3)	0.039 (3)	0.013 (2)	0.014 (2)	0.023 (3)
C42	0.023 (3)	0.042 (3)	0.037 (3)	0.017 (2)	0.013 (2)	0.019 (2)
C43	0.027 (3)	0.046 (3)	0.042 (3)	0.016 (2)	0.015 (2)	0.016 (3)
C44	0.027 (3)	0.045 (3)	0.051 (4)	0.021 (3)	0.013 (3)	0.011 (3)
C45	0.034 (3)	0.038 (3)	0.056 (4)	0.020 (3)	0.015 (3)	0.015 (3)
C46	0.031 (3)	0.040 (3)	0.049 (3)	0.016 (2)	0.014 (3)	0.021 (3)
C47	0.034 (3)	0.056 (4)	0.057 (4)	0.012 (3)	0.022 (3)	0.026 (3)
C48	0.028 (3)	0.054 (4)	0.057 (4)	0.016 (3)	0.022 (3)	0.018 (3)

Geometric parameters (Å, °)

Yb1—O1 ⁱ	2.261 (3)	C18—C19	1.413 (9)
Yb1—O3	2.266 (3)	C18—H18	0.9300
Yb1—O6	2.300 (4)	C19—C24	1.408 (9)
Yb1—O4 ⁱ	2.311 (3)	С19—С20	1.435 (8)

Yb1—O2	2.397 (3)	C20—C21	1.401 (8)
Yb1—N2	2.494 (4)	C21—C22	1.368 (9)
Yb1—O1	2.558 (3)	C21—H21	0.9300
Yb1—N1	2.560 (4)	C22—C23	1.393 (10)
Yb1—O5	2.576 (4)	С22—Н22	0.9300
Yb1—Yb1 ⁱ	3.8482 (5)	C23—C24	1.345 (10)
N1—C37	1.316 (6)	C23—H23	0.9300
N1—C41	1.364 (6)	C24—H24	0.9300
N2—C46	1.326 (7)	C25—C26	1.534 (8)
N2—C42	1.358 (6)	C26—C27	1.487 (9)
01—C1	1.262 (6)	C26—H26A	0.9700
Ol—Ybl ⁱ	2.261 (3)	С26—Н26В	0.9700
O2—C1	1.249 (6)	C27—C28	1.368 (10)
O3—C13	1.251 (6)	C27—C32	1.434 (9)
O4—C13	1.264 (6)	C28—C29	1.413 (11)
O4—Yb1 ⁱ	2.311 (3)	C28—H28	0.9300
O5—C25	1.245 (7)	C29—C30	1.332 (11)
O6—C25	1.255 (7)	С29—Н29	0.9300
C1—C2	1.517 (7)	C30—C31	1.421 (11)
C2—C3	1.511 (8)	С30—Н30	0.9300
C2—H2A	0.9700	C31—C36	1.414 (11)
C2—H2B	0.9700	C31—C32	1.415 (9)
C3—C4	1.361 (8)	C32—C33	1.402 (10)
C3—C8	1.427 (8)	C33—C34	1.374 (11)
C4—C5	1.411 (9)	С33—Н33	0.9300
C4—H4	0.9300	C34—C35	1.392 (13)
C5—C6	1.329 (9)	С34—Н34	0.9300
С5—Н5	0.9300	C35—C36	1.308 (12)
C6—C7	1.417 (9)	С35—Н35	0.9300
С6—Н6	0.9300	С36—Н36	0.9300
C7—C12	1.420 (9)	C37—C38	1.402 (8)
С7—С8	1.429 (8)	С37—Н37	0.9300
C8—C9	1.412 (8)	C38—C39	1.354 (8)
C9—C10	1.353 (9)	С38—Н38	0.9300
С9—Н9	0.9300	C39—C40	1.404 (8)
C10—C11	1.395 (10)	С39—Н39	0.9300
C10—H10	0.9300	C40—C41	1.410 (7)
C11—C12	1.337 (10)	C40—C47	1.439 (8)
C11—H11	0.9300	C41—C42	1.429 (7)
C12—H12	0.9300	C42—C43	1.416 (7)
C13—C14	1.519 (6)	C43—C44	1.399 (8)
C14—C15	1.509 (7)	C43—C48	1.435 (8)
C14—H14A	0.9700	C44—C45	1.356 (8)
C14—H14B	0.9700	C44—H44	0.9300
C15—C16	1.372 (8)	C45—C46	1.405 (7)
C15—C20	1.426 (8)	C45—H45	0.9300
C16—C17	1.423 (8)	C46—H46	0.9300
C16—H16	0.9300	C47—C48	1.343 (9)

C17—C18 C17—H17	1.337 (9) 0.9300	C47—H47 C48—H48	0.9300 0.9300
Ol ⁱ —Yb1—O3	77.16 (12)	H14A—C14—H14B	107.3
$O1^{i}$ —Yb1—O6	86.10 (14)	C16—C15—C20	118.6 (5)
O3—Yb1—O6	128.93 (13)	C16—C15—C14	120.4 (5)
$O1^{i}$ Yb1 $O4^{i}$	76.78 (12)	C20—C15—C14	120.9 (5)
$O3$ —Vb1— $O4^{i}$	137.10 (11)	C15—C16—C17	121.5 (6)
$06 - Vb1 - 04^{i}$	82.27 (13)	C15—C16—H16	119.2
01^{i} Vb1 02	125.81 (11)	C17-C16-H16	110.2
01 - 101 - 02	123.01(11)	C_{1}^{19} C_{17}^{17} C_{16}^{16}	119.2
03 - 101 - 02	(12)	$C_{18} - C_{17} - C_{16}$	120.0 (6)
	144.04 (13)		120.0
O4-Yb1-O2	89.08 (13)	C16—C1/—H1/	120.0
O1 ¹ —Yb1—N2	138.96 (12)	C17—C18—C19	121.9 (6)
O3—Yb1—N2	78.92 (12)	C17—C18—H18	119.0
O6—Yb1—N2	83.60 (15)	C19—C18—H18	119.0
O4 ⁱ —Yb1—N2	140.13 (13)	C24—C19—C18	123.2 (6)
O2—Yb1—N2	81.01 (12)	C24—C19—C20	118.7 (6)
Ol ⁱ —Yb1—Ol	74.18 (13)	C18—C19—C20	118.1 (6)
O3—Yb1—O1	70.65 (11)	C21—C20—C15	122.5 (5)
O6—Yb1—O1	148.65 (13)	C21—C20—C19	117.6 (6)
O4 ⁱ —Yb1—O1	69.79 (11)	C15—C20—C19	119.8 (5)
O2—Yb1—O1	52.02 (10)	C22—C21—C20	121.7 (6)
N2—Yb1—O1	127.12 (12)	C22—C21—H21	119.1
$O1^{i}$ —Yb1—N1	147.03 (13)	C20—C21—H21	119.1
O3—Yb1—N1	135.77 (13)	C21—C22—C23	119.9 (7)
O6—Yb1—N1	73.43 (14)	C21—C22—H22	120.0
O4 ⁱ —Yb1—N1	75.09 (12)	C23—C22—H22	120.0
O2—Yb1—N1	70.61 (13)	C24—C23—C22	120.6 (7)
N2—Yb1—N1	65.16 (13)	C24—C23—H23	119.7
O1—Yb1—N1	111.06 (12)	С22—С23—Н23	119.7
O1 ⁱ —Yb1—O5	74.39 (12)	C23—C24—C19	121.4 (7)
O3—Yb1—O5	76.30 (12)	C23—C24—H24	119.3
O6—Yb1—O5	52.69 (13)	C19—C24—H24	119.3
$O4^{i}$ —Yb1—O5	127.17 (13)	O5—C25—O6	121.2 (5)
02—Yb1—05	143.38 (12)	O5—C25—C26	119.3 (5)
N2—Yb1—O5	67.81 (13)	O6—C25—C26	119.5 (5)
O1—Yb1—O5	138.36 (11)	C27—C26—C25	114.7 (5)
N1—Yb1—O5	110.21 (13)	C27—C26—H26A	108.6
Ol ⁱ —Yb1—Yb1 ⁱ	39.76 (9)	C25—C26—H26A	108.6
O3—Yb1—Yb1 ⁱ	69.46 (8)	С27—С26—Н26В	108.6
O6—Yb1—Yb1 ⁱ	121.85 (11)	С25—С26—Н26В	108.6
O4 ⁱ —Yb1—Yb1 ⁱ	68.65 (8)	H26A—C26—H26B	107.6
O2—Yb1—Yb1 ⁱ	86.26 (8)	C28—C27—C32	119.2 (7)
N2—Yb1—Yb1 ⁱ	147.59 (10)	C28—C27—C26	119.6 (7)

Ol—Ybl—Ybl ⁱ	34.42 (7)	C32—C27—C26	121.2 (7)
N1—Yb1—Yb1 ⁱ	137.03 (9)	C27—C28—C29	121.2 (8)
O5—Yb1—Yb1 ⁱ	109.80 (9)	C27—C28—H28	119.4
C37—N1—C41	118.4 (4)	C29—C28—H28	119.4
C37—N1—Yb1	124.1 (3)	C30—C29—C28	120.2 (8)
C41—N1—Yb1	117.4 (3)	С30—С29—Н29	119.9
C46—N2—C42	118.4 (4)	С28—С29—Н29	119.9
C46—N2—Yb1	121.7 (3)	C29—C30—C31	121.7 (8)
C42—N2—Yb1	119.5 (3)	С29—С30—Н30	119.1
C1—O1—Yb1 ⁱ	163.5 (3)	С31—С30—Н30	119.1
C1—O1—Yb1	89.8 (3)	C36—C31—C32	119.3 (8)
Yb1 ⁱ —O1—Yb1	105.82 (13)	C36—C31—C30	122.1 (8)
C1—O2—Yb1	97.8 (3)	C32—C31—C30	118.6 (7)
C13—O3—Yb1	136.6 (3)	C33—C32—C31	118.6 (7)
$C_{13} - O_{4} - Y_{b_{1}}^{i}$	136.4 (3)	C33—C32—C27	122.4 (7)
C25-O5-Yb1	86 7 (3)	C31—C32—C27	1190(7)
C25—O6—Yb1	99.4 (3)	C34—C33—C32	119.5 (8)
02-C1-O1	120.3 (5)	C34—C33—H33	120.2
O2—C1—C2	121.7 (4)	С32—С33—Н33	120.2
O1—C1—C2	118.0 (4)	C33—C34—C35	120.3 (9)
C3—C2—C1	116.4 (4)	C33—C34—H34	119.8
С3—С2—Н2А	108.2	С35—С34—Н34	119.8
C1—C2—H2A	108.2	C36—C35—C34	121.9 (9)
C3—C2—H2B	108.2	С36—С35—Н35	119.0
C1—C2—H2B	108.2	С34—С35—Н35	119.0
H2A—C2—H2B	107.3	C35—C36—C31	120.3 (9)
C4—C3—C8	119.4 (6)	С35—С36—Н36	119.9
C4—C3—C2	119.2 (5)	С31—С36—Н36	119.9
C8—C3—C2	121.4 (5)	N1—C37—C38	122.7 (5)
C3—C4—C5	121.4 (6)	N1—C37—H37	118.6
C3—C4—H4	119.3	С38—С37—Н37	118.6
С5—С4—Н4	119.3	C39—C38—C37	119.6 (5)
C6—C5—C4	120.5 (7)	С39—С38—Н38	120.2
С6—С5—Н5	119.7	С37—С38—Н38	120.2
C4—C5—H5	119.7	C38—C39—C40	119.7 (5)
C5—C6—C7	121.2 (6)	С38—С39—Н39	120.1
С5—С6—Н6	119.4	С40—С39—Н39	120.1
С7—С6—Н6	119.4	C39—C40—C41	117.3 (5)
C6—C7—C12	122.5 (6)	C39—C40—C47	123.4 (5)
C6—C7—C8	118.8 (6)	C41—C40—C47	119.3 (5)
C12—C7—C8	118.6 (6)	N1—C41—C40	122.2 (5)
C9—C8—C3	123.7 (6)	N1—C41—C42	117.9 (4)
C9—C8—C7	117.7 (6)	C40—C41—C42	119.9 (5)
C3—C8—C7	118.6 (6)	N2—C42—C43	121.8 (5)
C10—C9—C8	121.3 (6)	N2—C42—C41	118.8 (4)
С10—С9—Н9	119.3	C43—C42—C41	119.4 (5)
С8—С9—Н9	119.3	C44—C43—C42	118.1 (5)
C9—C10—C11	120.5 (7)	C44—C43—C48	122.7 (5)

С9—С10—Н10	119.8	C42—C43—C48	119.2 (5)
C11—C10—H10	119.8	C45—C44—C43	119.6 (5)
C12—C11—C10	120.9 (7)	C45—C44—H44	120.2
C12—C11—H11	119.6	C43—C44—H44	120.2
C10-C11-H11	119.6	C44—C45—C46	119.2 (5)
C11—C12—C7	121.0 (7)	C44—C45—H45	120.4
C11—C12—H12	119.5	C46—C45—H45	120.4
С7—С12—Н12	119.5	N2—C46—C45	123.0 (5)
O3—C13—O4	125.9 (4)	N2—C46—H46	118.5
O3—C13—C14	117.0 (4)	C45—C46—H46	118.5
O4—C13—C14	117.1 (4)	C48—C47—C40	120.7 (5)
C15—C14—C13	116.5 (4)	C48—C47—H47	119.6
C15—C14—H14A	108.2	C40—C47—H47	119.6
C13—C14—H14A	108.2	C47—C48—C43	121.5 (5)
C15—C14—H14B	108.2	C47—C48—H48	119.3
C13—C14—H14B	108.2	C43—C48—H48	119.3
O1 ⁱ —Yb1—N1—C37	-40.6 (5)	C2—C3—C8—C7	-179.8 (5)
O3—Yb1—N1—C37	136.1 (4)	C6—C7—C8—C9	179.2 (6)
O6—Yb1—N1—C37	-94.5 (4)	C12—C7—C8—C9	0.5 (8)
O4 ⁱ —Yb1—N1—C37	-8.3 (4)	C6—C7—C8—C3	-1.1 (9)
O2—Yb1—N1—C37	86.1 (4)	C12—C7—C8—C3	-179.8 (5)
N2—Yb1—N1—C37	175.0 (5)	C3—C8—C9—C10	179.5 (6)
O1—Yb1—N1—C37	52.7 (5)	C7—C8—C9—C10	-0.9 (9)
O5—Yb1—N1—C37	-132.9 (4)	C8—C9—C10—C11	0.5 (10)
Yb1 ⁱ —Yb1—N1—C37	24.7 (5)	C9—C10—C11—C12	0.2 (11)
O1 ⁱ —Yb1—N1—C41	135.2 (4)	C10-C11-C12-C7	-0.5 (11)
O3—Yb1—N1—C41	-48.0 (4)	C6—C7—C12—C11	-178.5 (7)
O6—Yb1—N1—C41	81.3 (4)	C8—C7—C12—C11	0.2 (10)
O4 ⁱ —Yb1—N1—C41	167.5 (4)	Yb1—O3—C13—O4	17.9 (8)
O2—Yb1—N1—C41	-98.1 (4)	Yb1-O3-C13-C14	-164.5 (3)
N2—Yb1—N1—C41	-9.2 (4)	Yb1 ⁱ _O4_C13_O3	4.3 (9)
O1—Yb1—N1—C41	-131.5 (4)	Yb1 ⁱ —O4—C13—C14	-173.3 (3)
O5—Yb1—N1—C41	42.9 (4)	O3—C13—C14—C15	132.2 (5)
Yb1 ⁱ —Yb1—N1—C41	-159.5 (3)	O4—C13—C14—C15	-49.9 (7)
O1 ⁱ —Yb1—N2—C46	30.1 (5)	C13—C14—C15—C16	116.9 (6)
O3—Yb1—N2—C46	-25.1 (4)	C13-C14-C15-C20	-65.7 (6)
O6—Yb1—N2—C46	106.6 (4)	C20-C15-C16-C17	0.3 (8)
O4 ⁱ —Yb1—N2—C46	176.4 (4)	C14—C15—C16—C17	177.7 (5)
O2—Yb1—N2—C46	-106.0 (4)	C15-C16-C17-C18	-1.4 (9)
O1—Yb1—N2—C46	-80.3 (4)	C16—C17—C18—C19	0.2 (10)
N1—Yb1—N2—C46	-178.7 (4)	C17—C18—C19—C24	-176.6 (6)
O5—Yb1—N2—C46	54.4 (4)	C17—C18—C19—C20	1.9 (9)
Yb1 ⁱ —Yb1—N2—C46	-37.9 (5)	C16—C15—C20—C21	178.5 (5)
O1 ⁱ —Yb1—N2—C42	-141.8 (3)	C14—C15—C20—C21	1.1 (8)
O3—Yb1—N2—C42	163.0 (4)	C16—C15—C20—C19	1.8 (8)
O6—Yb1—N2—C42	-65.2 (4)	C14—C15—C20—C19	-175.6 (5)

O4 ⁱ —Yb1—N2—C42	4.5 (5)	C24—C19—C20—C21	-1.2 (8)
O2—Yb1—N2—C42	82.1 (4)	C18—C19—C20—C21	-179.7 (5)
O1—Yb1—N2—C42	107.8 (4)	C24—C19—C20—C15	175.7 (5)
N1—Yb1—N2—C42	9.4 (3)	C18—C19—C20—C15	-2.8 (8)
O5—Yb1—N2—C42	-117.4 (4)	C15—C20—C21—C22	-176.1 (6)
Yb1 ⁱ —Yb1—N2—C42	150.3 (3)	C19—C20—C21—C22	0.7 (9)
O1 ⁱ —Yb1—O1—C1	-174.9 (3)	C20—C21—C22—C23	0.7 (10)
O3—Yb1—O1—C1	-93.2 (3)	C21—C22—C23—C24	-1.7 (11)
O6—Yb1—O1—C1	132.1 (3)	C22—C23—C24—C19	1.2 (11)
O4 ⁱ —Yb1—O1—C1	103.7 (3)	C18—C19—C24—C23	178.7 (6)
O2—Yb1—O1—C1	-1.7 (3)	C20—C19—C24—C23	0.2 (9)
N2—Yb1—O1—C1	-34.6 (3)	Yb1	0.6 (6)
N1—Yb1—O1—C1	39.5 (3)	Yb1	179.9 (5)
O5—Yb1—O1—C1	-132.6 (3)	Yb1	-0.7 (6)
Yb1 ⁱ —Yb1—O1—C1	-174.9 (3)	Yb1-06-C25-C26	180.0 (5)
O1 ⁱ —Yb1—O1—Yb1 ⁱ	0.0	O5—C25—C26—C27	-176.3 (6)
O3—Yb1—O1—Yb1 ⁱ	81.65 (14)	O6—C25—C26—C27	3.0 (9)
O6—Yb1—O1—Yb1 ⁱ	-53.0 (3)	C25—C26—C27—C28	99.6 (7)
O4 ⁱ —Yb1—O1—Yb1 ⁱ	-81.43 (14)	C25—C26—C27—C32	-79.4 (8)
O2—Yb1—O1—Yb1 ⁱ	173.1 (2)	С32—С27—С28—С29	1.7 (10)
N2—Yb1—O1—Yb1 ⁱ	140.23 (14)	C26—C27—C28—C29	-177.3 (6)
N1—Yb1—O1—Yb1 ⁱ	-145.61 (14)	С27—С28—С29—С30	-2.2 (11)
O5—Yb1—O1—Yb1 ⁱ	42.3 (2)	C28—C29—C30—C31	0.6 (11)
O1 ⁱ —Yb1—O2—C1	9.9 (3)	C29—C30—C31—C36	-178.9 (7)
O3—Yb1—O2—C1	75.4 (3)	C29—C30—C31—C32	1.5 (10)
O6—Yb1—O2—C1	-138.5 (3)	C36—C31—C32—C33	-2.4 (9)
O4 ⁱ —Yb1—O2—C1	-63.1 (3)	C30—C31—C32—C33	177.2 (6)
N2—Yb1—O2—C1	155.7 (3)	C36—C31—C32—C27	178.4 (6)
O1—Yb1—O2—C1	1.7 (3)	C30—C31—C32—C27	-2.0 (9)
N1—Yb1—O2—C1	-137.6 (3)	C28—C27—C32—C33	-178.7 (6)
O5—Yb1—O2—C1	124.4 (3)	C26—C27—C32—C33	0.2 (9)
Yb1 ⁱ —Yb1—O2—C1	5.6 (3)	C28—C27—C32—C31	0.5 (9)
O1 ⁱ —Yb1—O3—C13	22.5 (5)	C26—C27—C32—C31	179.4 (6)
O6—Yb1—O3—C13	96.6 (5)	C31—C32—C33—C34	1.7 (10)
O4 ⁱ —Yb1—O3—C13	-31.4 (5)	C27—C32—C33—C34	-179.2 (6)
O2—Yb1—O3—C13	-108.3 (5)	C32—C33—C34—C35	-0.5 (11)
N2—Yb1—O3—C13	168.9 (5)	C33—C34—C35—C36	0.1 (13)
O1—Yb1—O3—C13	-55.0 (5)	C34—C35—C36—C31	-0.8 (13)
N1—Yb1—O3—C13	-155.7 (4)	C32—C31—C36—C35	2.0 (11)
O5—Yb1—O3—C13	99.3 (5)	C30—C31—C36—C35	-177.5 (7)
Yb1 ⁱ —Yb1—O3—C13	-18.3 (4)	C41—N1—C37—C38	-1.9 (8)
O1 ⁱ —Yb1—O5—C25	-97.5 (3)	Yb1—N1—C37—C38	173.9 (4)
O3—Yb1—O5—C25	-177.8 (3)	N1—C37—C38—C39	-1.5 (9)
O6—Yb1—O5—C25	-0.4 (3)	C37—C38—C39—C40	2.9 (9)
O4 ⁱ —Yb1—O5—C25	-38.2 (4)	C38—C39—C40—C41	-1.1 (9)

O2—Yb1—O5—C25	132.5 (3)	C38—C39—C40—C47	176.9 (6)
N2—Yb1—O5—C25	98.8 (3)	C37—N1—C41—C40	3.8 (8)
O1—Yb1—O5—C25	-139.7 (3)	Yb1—N1—C41—C40	-172.3 (4)
N1—Yb1—O5—C25	48.1 (4)	C37—N1—C41—C42	-175.3 (5)
Yb1 ⁱ —Yb1—O5—C25	-115.9 (3)	Yb1—N1—C41—C42	8.7 (6)
O1 ⁱ —Yb1—O6—C25	73.7 (4)	C39—C40—C41—N1	-2.3 (8)
O3—Yb1—O6—C25	3.6 (4)	C47—C40—C41—N1	179.7 (5)
O4 ⁱ —Yb1—O6—C25	150.9 (4)	C39—C40—C41—C42	176.7 (5)
O2—Yb1—O6—C25	-131.5 (3)	C47—C40—C41—C42	-1.3 (8)
N2—Yb1—O6—C25	-66.5 (4)	C46—N2—C42—C43	-0.7 (8)
O1—Yb1—O6—C25	124.1 (4)	Yb1—N2—C42—C43	171.4 (4)
N1—Yb1—O6—C25	-132.5 (4)	C46—N2—C42—C41	178.7 (5)
O5—Yb1—O6—C25	0.4 (3)	Yb1—N2—C42—C41	-9.2 (6)
Yb1 ⁱ —Yb1—O6—C25	92.0 (4)	N1—C41—C42—N2	0.1 (7)
Yb1—O2—C1—O1	-3.2 (5)	C40—C41—C42—N2	-179.0 (5)
Yb1—O2—C1—C2	176.1 (4)	N1—C41—C42—C43	179.5 (5)
Yb1 ⁱ —O1—C1—O2	-159.3 (8)	C40—C41—C42—C43	0.4 (8)
Yb1—O1—C1—O2	3.0 (5)	N2—C42—C43—C44	1.4 (8)
Yb1 ⁱ —O1—C1—C2	21.4 (14)	C41—C42—C43—C44	-178.0 (5)
Yb1—O1—C1—C2	-176.3 (4)	N2-C42-C43-C48	179.7 (5)
O2—C1—C2—C3	10.1 (8)	C41—C42—C43—C48	0.3 (8)
O1—C1—C2—C3	-170.6 (5)	C42—C43—C44—C45	-1.6 (8)
C1—C2—C3—C4	106.3 (6)	C48—C43—C44—C45	-179.9 (6)
C1—C2—C3—C8	-73.3 (7)	C43—C44—C45—C46	1.2 (9)
C8—C3—C4—C5	-0.8 (9)	C42—N2—C46—C45	0.3 (8)
C2—C3—C4—C5	179.6 (5)	Yb1—N2—C46—C45	-171.7 (4)
C3—C4—C5—C6	1.4 (10)	C44—C45—C46—N2	-0.6 (9)
C4—C5—C6—C7	-1.8 (11)	C39—C40—C47—C48	-176.3 (6)
C5—C6—C7—C12	-179.6 (6)	C41—C40—C47—C48	1.6 (9)
C5—C6—C7—C8	1.7 (10)	C40—C47—C48—C43	-0.9 (10)
C4—C3—C8—C9	-179.7 (6)	C44—C43—C48—C47	178.2 (6)
C2—C3—C8—C9	-0.1 (9)	C42—C43—C48—C47	-0.1 (9)
C4—C3—C8—C7	0.7 (8)		
Symmetry codes: (i) $-x+2, -y+1, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
C30—H30…O6 ⁱⁱ	0.93	2.50	3.374 (9)	157	
C44—H44···O2 ⁱⁱⁱ	0.93	2.44	3.223 (6)	142	
C37—H37····O4 ⁱ	0.93	2.34	2.944 (6)	123	
С46—Н46…ОЗ	0.93	2.45	3.044 (6)	122	
Symmetry adds: (ii) $-x+2$ $-x+1$ $-x+2$; (iii) $-x+1$ $-x+1$; (i) $-x+2$ $-x+1$ $-x+1$					

Symmetry codes: (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (i) -x+2, -y+1, -z+1.

